The AI landscape has been dominated by Large Language Models (LLMs)—massive neural networks trained on trillions of tokens, spanning hundreds of billions of parameters. These models, such as GPT-4 or Claude, have shown remarkable general-purpose intelligence, but they come with steep costs: enormous compute requirements, GPU dependency, and operational overheads that make them inaccessible for […]

Read More

As enterprises rapidly adopt AI to improve efficiency, customer experience, and innovation, the choice of model architecture has become a critical factor. Whether it’s deploying a massive Large Language Model (LLM), an efficient Very Large Language Model (VLLM), or a compute-friendly Small Language Model (SLM), organisations are increasingly strategic about balancing performance, cost, and accuracy. […]

Read More

Not long ago, I wrote about why Retrieval-Augmented Generation (RAG) is such a pivotal architecture in modern AI workflows, particularly when compared to fine-tuning and training from scratch. The core argument was simple: RAG enables models to stay up-to-date, grounded, and efficient without massive retraining costs. It was (and still is) a pragmatic solution to […]

Read More

The rise of large language models (LLMs) has driven significant demand for efficient inference and fine-tuning frameworks. One such framework, vLLM, is optimised for high-performance serving with PagedAttention, allowing for memory-efficient execution across diverse hardware architectures. With the introduction of new AI accelerators such as Gaudi3, H200, and MI300X, optimising fine-tuning parameters is essential to […]

Read More