In recent years, the crypto “energy crisis” sparked global alarm. Bitcoin mining alone consumed roughly 0.4% of global electricity, and crypto‑mining + data centers already made up about 2% of world demand in 2022 [1]. But now, AI workloads—particularly generative and large‑language‑model (LLM) operations—are poised to make an even bigger dent in our energy systems […]

Read More

As enterprises rapidly adopt AI to improve efficiency, customer experience, and innovation, the choice of model architecture has become a critical factor. Whether it’s deploying a massive Large Language Model (LLM), an efficient Very Large Language Model (VLLM), or a compute-friendly Small Language Model (SLM), organisations are increasingly strategic about balancing performance, cost, and accuracy. […]

Read More

Not long ago, I wrote about why Retrieval-Augmented Generation (RAG) is such a pivotal architecture in modern AI workflows, particularly when compared to fine-tuning and training from scratch. The core argument was simple: RAG enables models to stay up-to-date, grounded, and efficient without massive retraining costs. It was (and still is) a pragmatic solution to […]

Read More

Artificial Intelligence (AI) is transforming industries, but deploying AI workloads efficiently remains a challenge. Many organisations look to virtualisation to maximise resource utilisation, improve security, and streamline AI infrastructure management. This blog explores how to deploy AI workloads in virtualised environments using VMware Virtualised vSphere for AI (VVF), Private AI on VMware Cloud Foundation (VCF), […]

Read More